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1. INTRODUCTION

Let U, V be a pair of convex sets in a normed linear space X. The points
ii E U, V E V are called proximal if

!i it - viI = d(a, V) = inf I' u - v I!.
llEU, vEV

It is easily observed that if the points U E a, vE V are proximal, then they
are mutually nearest to each other from the respective sets. However, the
converse implication is generally not true, even for Chebyshev1 sets a, V.
In this connection it is convenient to restate here the following result from
Pai [9]: "In order that for each pair a, v of convex sets in X, points U E a,
vE V that are mutually nearest to each other be proximal, it is necessary and
sufficient that the space X be smooth." In the present paper this result is
embedded in the answers to the following general questions pertaining to
convex optimization in locally convex spaces.

QUESTION 1. Letfbe a convex functional defined on a Hausdorff locally
convex linear topological space X. Let U, V be a pair of convex sets in X.
A pair (u, v) E a x V is called a multioptimum for f if

feu -v) = inf feu - v) = inf feu - v),
• VEV UEU

(1.1)

and it is called simply an optimum for fif u - vis an optimum for f on U - V,
Le.,

feu - v) =

1 See [12, p. 103] for the definition.
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inf feu - v).
UEU,~'EV
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(1.2)
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Then we ask: Under what conditions is a multioptimum (ii, v) an optimum
for /? More generally, we are concerned with

QUESTION 2. Let Xi, i = 1,2, .. " n, be Hausdorff locally convex linear
topological spaces and let Ki C Xi , i = 1,2,... , n, be convex sets. Let F be a
convex functional defined on n~~l Xi' Denote by FXl .....X'_l.Xi+l". "X

n
'

i = 1,2,... , n, the convex functionals defined on Xi by

We call (Xl' X2 ,... , Xn) E n7=l Ki a multioptimum for F if

i = 1,2, ... , n, (1.4)

and simply an optimum for F if

inf F(xl , X 2 , ... , x n).
XiEKi

i~l.2,. ... n

(1.5)

Then we ask: Under what conditions is a multioptimum (Xl'"'' Xn) an optimum
for F?

Question 2, of course, contains Question 1 as a special case upon taking
F(u, v) = feu - v). However, as it turns out, for particular cases such as
the case when/is a gauge function, necessary as well as sufficient conditions
can be given in order that, for each pair U, V of convex sets, (ii, v) E U X V
being a multioptimum for/imply that it is an optimum forf

The main results pertaining to Question 2 are given in Section 2. In
Section 3 we are concerned with Question 1 and also deal there with a special
case when/is given as a certain seminorm. Section 4 deals with the important
special cases when the convex sets K i of Section 2 and the convex sets U, V
of Section 3 are contained in subspaces of finite dimension. In Section 5
we discuss two applications: (1) multivariate constrained convex optimization,
and (2) global simultaneous approximation.

We take the standard framework of convex analysis as adopted in [8]
or [11] and recall here those notions that will frequently be used in the sequel.
Let X, Y be complex linear spaces in duality, <, > denoting the duality
relation. For topologies on X and Y, we taketopologies compatible wjth the
given duality <, >. Equipped with these, X, Y become Hausdorff locally
convex linear topological spaces. We say /E conv(X) if /: X ~ IR U {+ co}
is proper, i.e., / ~ +00 and it is convex. Let XK stand for the indicator
function

XK(X) = 0,

= 00,

XEK,

x¢:K,
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and let dom(j) = {x r= x/f(x) < oo}. Following Laurent [6, p. 335], we
say that a function I r= conv(X) is d-continuous if I is continuous on
int-dom(j). The subdifferential of f at x is af(x) = {y r= Y/f(x) ? f(x)
Re<x - x, Y), \Ix r= X}. The following result of Moreau and Rockafellar
(cf. Holmes [3, p. 25]) will frequently be employed. Let 11 '/2 r= conv(X).
Suppose there exists some point in dom(iJ.) n dom(I2) at which one of the
two functions is continuous. Then for each x E X one has aUI + f2)(x) =
afl(x) -'- af2(X).

2. CHARACTERIZATION OF OPTIMUM AND MULTIOPTIMUM IN QUESTION 2

Let the linear spaces Xi and Yi be in duality, <, )i denoting the duality
relation between them, i = 1,2,... , n. For the product spaces n7=1 Xi
and n7~1 Yi we take the following duality that corresponds to the given
dualities between Xi and Y i :

THEOREM 2.1. Let F r= conv(n;~l Xi) and let Ki C Xi be convex,
i = 1, 2, ... , n. Assume that either

or

(HI') F is d-continuous and int-dom(F) tl n7~1 Ki c# 0

holds. Then (Xl'"'' Xn) r= n:1 K i is an optimum for F if and only (f there
exists (YI , Y2 ,... , Yn) r= n7=1 Yi such that

(i) (Yt, Y2 ,..., Yn) E aF(xl , ... , xn) and

(ii) Re<x i , Yi)i = minX;EK
I

Re<xi , Yi); .

Proof We observe that (Xl' X2 '00" Xn) r= n7=1 Ki is an optimum for F

iff (0,0, ... ,0) r= 8(F Xn~~lK)(XI , ... , xn),

(under hypothesis (HI) or (HI')' It suffices therefore to prove that

n

8xn7~lK/Xl '00" xn) = n0XK,(Xi ),
i=l

(2.1)
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n

iff (YI ,.. " Yn) E 11 8xK;CXi)'
i~l

i = 1,2,... , n,

Theorem 2.1 is a slight extension of a theorem ofPsenicnil: and Rockafellar
for convex programs (see, e.g., [3, p. 30]).

THEOREM 2.2. Suppose F E conv(n;~l Xi) and that it is finite and con­
tinuous at (Xl"'" Xn) E n;~l Ki • Then in order that (Xl"'" Xn) being a multi­
optimum for F imply that it is an optimum for F, it is sufficient that the following
equality hold for the subdifferentials:

(2.2)

Proof We first note the following easily established inclusion for the
subdifferentials:

(2.3)

Assume now that equality (2.2) holds in the above inclusion. In view of (1.4)
we have that (Xl' X2 , ••• , Xn) is a multioptimum for F

i=I,2,... ,n,

n n

iff 11 8Fxl.....Xi_l.XHv ....xn(Xi) n 11 8X-Ki-Xi) =F 0.
i~l i~l

Employing (2.1) and (2.2), the last condition holds

iff (Xl'"'' Xn) is an optimum for F. I
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Remarks. (1) Let F E conv(n~=l Xi) and let it be finite and continuous
at (Xl '0'" xn). Then the equality (2.2) holds for the subdifferentials if and
only if the following equality holds for the directional derivatives:

n

F'(x1 , ..• , x n ; Xl"'" Xn ) = I F~,.....5ii_,.Xi+1"'''Xn(Xi ; xJ
i~l

(2.4)
n

= L F'(x1 , ... , Xn ; 0, 0, ... , Xi ,... , 0).
i~l

In fact,

F'(x1 , ... , xn ; Xl"'" X n) = max_ _ \ f Re<Xi, Yi)(
(Y""',Yn)E8F(x

"
... ,xn ) li~l \

n

::( I max _ Re(Xi' )'i)
i=l YiEOFXl'" "Xi-l,Xi+l" "'Xn (Xi)

Hence, equality in the inclusion (2.3) for subdifferentials enforces equality
in the above inequality. Conversely, suppose (2.4) holds and let

Then

n n

L Re<xi , Yi) ~ L F~,... "5ii_,.5ii+" .. ,,xn<Xi ; Xi) = F'(x l , ... , xn ; Xl'"'' X n)
i=l i=l

Xi E Xi, i = 1, 2, ... , n.

Thus (YI , Y2 ,,,., Yn) E aF(Xl ,..., xn) and (2.2) holds.

(2) Again, let F E conv(n~~l Xi) and let it be finite and continuous
at (Xl,'''' Xn)' Then F is Gateaux-differentiable at (Xl'"'' Xn) if and only if
FX, ,, ...Xi_l' Xi+l" ... X

n
is Gateaux-differentiable at Xi, i = 1, 2,... , n. In this

case (2.2) evidently holds for the subdifferentials.

(3) Apart from the differentiable case of the preceding remark, another
simple case, wherein (2.2) holds for the subdifferentials, is the following:
F(x1 , ... , x n) = h(X1) + ... + fn(xn ), where h E conv(Xi ), i = 1, 2, ... , n.
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(4) Condition (2.2) is not necessary in order for a muItioptimum to be
an optimum. To illustrate this, let Xi = Xbe a Banach space, i = 1,2,... , n,
and let F(XI , ... , xn) = II L:;=l Xi II. Let (Xl ;... , Xn) = (0, 0, ..., 0). Then for
arbitrarily given convex sets Ki C Xi such that (0, ... ,0) E n:=l Ki , (0, 0, ... , 0)
is a muItioptimum implies that it is an optimum for F. However, in this case
it is easily verified that (2.2) does not hold.

THEOREM 2.3. Let FE conv(n;=l Xi) and let it be finite and continuous at
(Xl'"'' Xn). Furthermore, suppose that (0, ..., 0) ¢ 8F(xl , ... , x n) and that the
following holds:

(IT U A.i 8Fxl..."Xi_l.XiH... .,X/Xi)) n of(xl , ... , xn) = 0. (2.5)
i=l,,;>O
~

(A.l , ... , A.n ) =1= (1, ... , 1)

Then in order that for arbitrarily given convex sets Ki C Xi such that Xi E Ki ,
i = 1,2,... , n, (Xl'"'' Xn ) being a multioptimum for F imply that it is an
optimum for F, it is necessary and sufficient that (2.2) hold.

Proof The sufficiency part is already contained in Theorem 2.2. In order
to prove the necessity part, suppose that (2.2) does not hold and let

(2.6)

Define the convex sets K i as follows:

i = 1,2,..., n.

Then by Theorem 2.1 one has that (Xl'"'' xn) is a multioptimum for F on
n K i · To complete the proof of the theorem, we assert that (Xl"'" xn)

is not an optimum for F on n K i •

Assume the contrary. Then using Theorem 2.1 once more there exists
an element

n

(5'1"'" Yn) E of(Xl ,... , Xn) n IT 8X-K;(-Xi)'
i=l

Now let

i = 1,2,..., n.

Since Yi E 0X-K.(-Xi), one has Ki CHi, i = 1,... , n. This inclusion of the
half-spaces in Xi entails that Yi = A.i Yi, Ai > 0, i= 1, 2, ..., n, where not
all the A/S are equal to 1 on account of (2.6). This contradicts (2.5) and
establishes the theorem. I
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3. CHARACTERIZATION OF OPTIMUM AND MULTIOPTIMUM IN QUESTION 1

LEMMA 3.1. Let f E conv(X) and define FE conv(X X X) by F(XI , x2) =
(Xl - X 2)(XI , X 2 E X). Given i\ , x2 E X, one has

(3.1)

and

Proof Relations (3.1) and the inclusion

are obvious.
In order to reverse this inclusion, suppose (h , Y2) E cF(xl ,x2). Then in

view of (2.3) and (3.1) one has (Yl' Y2) E cf(xI - x2) x-cf(xI - x2).

Taking into account the definition of subdifferential the inequality

holds for all Xl , X 2 E X. Hence, in particular it holds for Xl , X 2 E X satisfying
Xl - Xl = X 2 - x2 . Thus for all X E X we have Re (x, h + )'2) ~ 0, which
yields Yl + Y2 = O.

Employing Lemma 3.1 and Theorem 2.1, one immediately obtains

THEOREM 3.2. Let f E conv(X) and let U, V be convex sets in X. Assume
that either

(H2) dom(j) n int(U - V) oF 0

or
(H2') f is d-continuous and int dom(j) n (U - V) oF 0

holds. Then (u,B) E U X V is an optimum lor I if and only if there exists an
element Y E Y such that

(i) Y E 8f(u - v),

(ii) Re(u, y) = infuEu Re(u, y),

(iii) Re<v, y) = SUPVEV Re<v, y).

The next theorem furnishes an answer to Question 1 as a particular case
of Theorem 2.2.

THEOREM 3.3. Let I E conv(X) and let it be finite and continuous at u - v.
Then in order that (ii, v) E U X V being a multioptimum lor I imply that

it is an optimum for f, it is stifficient that f be Gateaux-differentiable at u - v.
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Proof Due to the assumption that f is finite and continuous at u - ii,
we note that of(u - ii) consists of a single element if and only if f is Gateaux­
differentiable at u - ii. Moreover, in view of Lemma 3.1 and the above
observation it follows that if we take F(u, v) = feu - v), then the equality
of(u, ii) = of;;(u) X oFfiCii) holds for the subdifferentials if and only if f
is Gateaux-differentiable at u - ii. The proof is completed by applying
Theorem 2.2. I

Remark. Theorem 3.3 remains valid if instead of assuming that f is
finite and contnuous at u - ii, we make anyone of the following weaker
hypotheses:

(H3) (u - dom(j)) n int V =1= 0 and (ii + dom(j)) n int U =1= 0;

(R3') fis d-continuous and int(ii - dom(j)) n V =1= 0,

int(ii + dom(j)) n U =1= 0.

The assertion follows easily by taking into account the first observation
in the proof of Theorem 3.3 and then employing Theorem 3.2.

COROLLARY 3.4. Let f E conv(X) and let it be finite and continuous at
XE X. Further suppose that 01= of(x) and that {U,\>O,,\#1 "Aof(x)} n of(x) = 0.

Then in order that, for arbitrary given convex sets U, V such that xE U and
oE V, (x, 0) being a multioptimum for f imply that it is an optimum for J,
it is necessary and sufficient that f be Gateaux-differentiable at x. .

Proof This follows immediately from Theorem 2.3 and Lemma 3.1. I
Corollary 3.4 can be strengthened in the case where f is a gauge function

on X, i.e., a real-valued function on X satisfyingf(xi + x 2) ~ f(xl ) + f(x2)

for all Xl , X2 E X and f("Ax) = Vex) for all x E X and "A ?= O. In this case
the subdifferential off at x is given by of(x) = {y E of(O)ff(x) = Re<x, y)},
where 0 denotes the zero vector of X. One thus obtains

THEOREM 3.5. Let f be a continuous gauge function defined on X. Then in
order that for arbitrarily given convex sets U, V in X and points it E U, ii E V
such that feu - ii) =1= 0, (ii, ii) being a multioptimum for f imply that it is
an optimum for J, it is necessary and sufficient that f be Gateaux-differentiable
at each point x E X, where f(x) =1= O.

Proof The sufficiency part is already contained in Theorem 3.3. To
prove the necessity part, suppose there exists a point x E X such that f (x) =1= 0
and such that f is not Gateaux-differentiable at X. Then there exist
YI , Y2 E of(O), Y1 =1= Y2, such that Re<x, Y1) = Re<x, Y2) = f(x). Let us
assume first that f(x) > O. Now select IX E X such that 0 < Re<IX, YI) <
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Re<.x, Y2) and let U = {xJRe<x, Y2) > f(x)}, V = {x/Re<x, YI) = O}. Then
x E U, 0 E V and (x, 0) is a multioptimum forf, but it is not an optimum for f:

In fact, let x = xf(x)/Re<x, Y2)' Then Re<x, YI) < f(x) = Re<x, Y2)'

This gives x E U, X - Re<x, YI)(x/f(x)) E V and

In case f(x) < 0 we select xE X such that 0 < Re<ii, Y2) < Re<x, YI) and
proceed exactly as before. I

In the last part of this section we consider the particular case when f is
a seminorm defined as follows .. Let B be a balanced and equicontinuous sub­
set of Y and let

f(x) = sup Re<x, y),
YEB

XEX.

We note that the set K = co(B) is a balanced convex and a(Y, X)-compact
subset of Yand hence we have f(x) = maxyEK Re<x, y) and

of(x) = {y E K/f(x) = Re<x, y)}.

In the case of a real locally convex space X, the above seminormfhas been
employed by Laurent [6, p. 426].

COROLLARY 3.6. Suppose that K is not contained in any closed hyperplane,
core2 (K) =1= 0 and that K is strictly convex, i.e., Xl' x 2 E K, 0 < A < 1,
imply (1 - it) Xl + Ax2 E core(K). Then for arbitrarily given convex sets U, V
in X and points ii E U, VE V, (ii, v) is a multioptimum for f implies that it is
an optimum for f:

Proof: In view of Theorem 3.5 it suffices to prove that for each x E X,
X =1= e, of(x) consists of a single element. We note that for B =1= x E X the
set of(x) is a nonempty a(Y, X)-compact and proper extremal subset of K.
Hence, if o(x) contained more than one point, say the points YI and Y2 with
YI =1= Y2, then (1 - A) YI + AY21= core(K), 0 < it < 1. This contradicts the
strict convextity of K and establishes the corollary. I

4. CHARACTERIZATION OF OPTIMUM FOR THE CASE OF FINITE DIMENSIONAL

CONVEX SETS

Here we consider the important special cases when the convex sets Ki

of Section 1 and the convex sets U, V of Section 3 are contained in subspaces

2 Recall that Core(K) = {k E K/Vk'EY, 3'>0 => V"'E[_•. H] , k + :tk' E K}.
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.of finite dimension. For this purpose we adopt essentially the approach as
given in [6, Theorem 8.3.3, p. 438]. However, with a suitable modification
of arguments, it is shown that Theorem 8.3.3 of [6] holds for a convex set
in place of a linear subspace and thereby extends to cover the cases of optima
dealt with in Section 2 and Section 3.

Let K C X be convex and let x E K. By

C(K; x) = U II(K - x)
'\>0

we denote the support cone of Kat X. Let L(K; x) = C(K; x) n -C(K; x)
stand for the largest subspace contained in the support cone C(K; x). By the
facet of x in K we will mean the set H(K; x) = (x + L(K; x)) n K. Note
that H(K; x) is the smallest extremal subset of K containing X. Hence, x is
and extreme point of K if and only if H(K; x) = {x} (or equivalently
L(K; x) = {e}).

LEMMA 4.1. Let X be of finite dimension n. Suppose fE conv(X) and let
it be finite and continuous at x E X. Suppose Y E of(x). Then there exist m
elements Yi E Ext3 (of(x)), i = 1,2,... , m, and mnumbers IIi > 0, L::I Ai = 1,
such that Y = L::I lIiYi, with 1 ~ m ~ n + 1 (for real scalars) or
1 ~ m ~ 2n + 1 (for complex scalars).

The lemma is well known (cf. [6, p. 436]). It is an immediate consequence
of the Krein-Milman Theorem, a theorem of Caratheodory and the fact
that of(x) is a nonempty a(Y, X)-compact convex set.

THEOREM 4.2. Let F E conv(n~=l Xi) and let it be finite and continuous
at (Xl"'" Xn) E n:l Ki , where Ki C Xi are convex sets such that
dim[Ki ]4 = mi , i = 1,..., n. Then (Xl"'" Xn) is an optimum for F if and only
if there exist s elements (yin ,... , y~») E Ext of(xl , ... , xn), 1 ~ j ~ s, and s
numbers Aj > 0, with L:;~l IIj = 1 such that

(i) 1 ~ s ~ L:~=l mi + 1 (real scalars) or 1 ~ s ~ 2 L:~=l mi + 1
complex scalars),

(ii) Re L:;=l IIj <Xi - Xi ,y~n>i ~ °(Xi E K i), i = 1, 2, ... , n.

Proof The sufficiency part of the theorem is trivial. To prove the necessity
part, let (Xl"'" Xn) E n~~l Ki be an optimum for F.. Then by Theorem 2.1
one has

n

8F(xI , ... , Xn) n n -8xK;CXi) =Ie 0.
i=l

3 As usual,· Ext(A) denotes the set of extreme points of A.
4 We employ the notation [Kd for the span of K i •

(4.1)
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We note that with the a(Yi , Xi) topology on Yi , i = 1,2,.,.. , n, the topology
of the product for n~=l Yi coincides with the a(n~=l Yi , n:=l Xi) topology
with respect to the corresponding duality (cf. [5, Theorem 17.14, p. 160)).
Thus the set TI~=l - 0Xg.{Xi) is a(11 Yi ,nXi)-closed and this entails that
the set on the left-hand side of C4.1) is aCD Yi , fIXi)-compact. By the Krein­
Milman theorem we have Ext(oF(xl ,"" x n) n n:=l - 0XK(Xi)) =F 0. Now
~ .

0\ ,... , jin) EO: Ext (ap(x l , ... , x,,) n}] -OXK;(Xi))'

Then we have

{(O, ... ,8)} = L (OF(X1 , , x,,) n }] -8XK;CXi); (j\ '"'' )in))

= L(8F(xl , , Xn); 0\ ,..., Yn)) n L (n -OX4Xi); 01 ,...,

(cf. [6, Proposition 8.3.2]).
On the other hand,

(4.2)

where A.l. stands for the annihilator subspace. For if we assume (Y1 ,... , Yn) E

(TI:=l [Ka)-\ then clearly

n

(Yi + }\ ,...,Yn + }in) E n -OXK;CXi)'
i=l

Hence, we get that

Since

is the largest subspace contained in the cone
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From (4.2) and (4.3) we conclude that L(oF(Xl ,... , xn); (,V1 ,... , Yn)) is a sub­
space of dimension at most equal to L:=l mi. The remaining argument is
exactly the same as that given in [6, Theorem 8.3.3]. In fact, H(oF(xl ,..., xn);
(Y1 ,... , Yn)) is a a(TI Yi , TI Xi)-compact convex set contained in a linear
variety of dimension at most equal to L~l mi (2 L:~l mi for the complex
case). Hence, to conclude the proof it only remains to apply Lemma 4.1
and to employ the fact that H(oF(Xl ,..., xn); (Y1 ,..., Yn)) is an extremal
subset of OF(X1 ,..., xn)· I

COROLLARY 4.3. Let f E conv(X) and let it be finite and continuous at
ii - v. Suppose ii E U and vE V, where U, V are convex sets such that
dim[U] = m and dim[V] = n. Then (ii, v) is an optimum for f if and only if
there exist k elements Yi E Ext of(ii - v) and k numbers Ai > 0 with

Ie
Li=l Ai = 1 such that

(i) 1::::;; k ::::;; m + n + 1, (real scalars), 1 ::::;; k ::::;; 2m + 2n + 1, (com­
plex scalars),

(ii) Re L:'..l Ai<ii - u, Yi) < 0 (u E U),

(iii) Re L:=l Ai<V - v, Yi) ~ 0 (v E V).

Proof This follows immediately upon applying Lemma 3.1 and
Theorem 4.2, I

Theorem 4.2 can be generalized so as to be valid under the slightly weaker
hypothesis CHI')' For this purpose we again adopt basically the same approach
as that given in [6, Theorem 8.3.6].

We recall that an extremal ray D of a set A C X is a closed semiline con­
tained in A, which is also an extremal subset of A. Extreme directions of A
are elements d such that A contains an extremal ray of the type
D = {xix = X o + Ad, A~ O}.

THEOREM 4.4. Let FE convCTI:=l Xi) and let it satisfy (HI')' Lei Ki C Xi
be convex sets such that dim[Ki] = mi , i = 1, ... , n. Then (Xl'"'' Xn) En:=l Ki
is an optimum for F if and only if there exist s elements (YiJ), ... , y~») E

Ext OF(X1 ,... , xn), I ::::;; j < sand t elements (dr), ..., d~»), 1 < j ::::;; t, t ;> 0,
that are extreme directions of of(xl ,... , xn), with 1 ::::;; s + t < L:1 mi + 1
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(2 2::~=1 mi + 1for complex scalars) and positive numbers AI,···, I\s , fLl , ... , fLt ,

2::;=1 Aj = 1, such that

(Xi E Ki), i = 1,2,... , n.

Proof The sufficiency part of the theorem clearly follows from
Theorem 2.1. To prove the necessity part, let (Xl'"'' Xn) E n:=l Ki be an
optimum for F. Since F is d-continuous the set of(x1 , ... , x n) is a
U(n:l Yi , n:=l Xi)-dosed convex locally compact set not containing a
line (cf. [4]). Employing Theorem 2.1 and Theorem 8.3.6(i) of Laurent [6,
p. 441], there exists an element

Proceeding exactly as in the proof of Theorem 4.2, we obtain that
H(oF(xl ,..., xn); (Yl , Y2 ,...,Yn» is a U(n:=l Yi , n:=l Xi)-dosed convex set
not containing a line and such that it is contained in a linear variety of
dimension equal to 2::~=1 mi (22:::=1 mi for the complex case). The remaining
argument is the same as that given in [6, Theorem 8.3.7]. I

COROLLA~Y 4.5. Let fE conv(X) and let it satisfy (H2'). Let U, V be
convex sets such that dim[U] = m, dim[V] = n, and let ii E U, V E V. Then
(ii, v) is an optimum for f if and only if there exist k elements Yi, i = 1, , k,
k ~ 1, that are extreme points of of(ii - v) and s elements di , i = 1, , S,

s ;?; 0, that are extreme directions ofof(ii - v) with 1 :;::;; k + s :;::;; m + n -+- 1
(2m + 2n + 1lor the complex case) andpositive numbers),1 ,... , Ak ,iLl'''', fLs ,

such that

(i) Re{2:::=l A/ii - u, Yi) + 2:::=1 fJ-/ii - u, di)} :::;; °(u E U),

(ii) Re{2:::=l Ai<V - v, Yi) + 2:::=1 fJ-i<V - v, di)} ;?; 0 (v E V).

5. ApPLICATIONS

Here we consider two specific examples, wherein the results of the previous
sections are applicable.
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a. Multivariate Constrained Convex Optimization

Let FE conv(n:=l Xi) and let it be finite everywhere. Let fiiJ E conv(Xi )

and let it be continuous on Xi , j = 1, 2,... , mi , i = 1, 2,..., n. Furthermore,
let the convex sets Ki C Xi be defined as follows:

i = 1,2,... ,11,

where

j = 1, 2, ... , mi and i = 1, 2, ... , n,

In addition, we make the following regularity hypothesis on the
functions f~iJ:

minKJjl oft 0,
j=l

i = 1,2,... , n.

Then Theorem 2.1 takes the following particular form.

THEOREM 5.1. (Kuhn-Tucker-type characterization) If the hypothesis (Rl)
is fulfilled, then (Xl"'" Xn) E n:~l Ki is an optimum for F if and only if there
exist elements yi j) E of~j)(Xi) and numbers Ai j) ~ 0, j = 1,2,... , mi ,
i = 1,2,... , n, such that Aij)f~j)(Xi) = O,j = 1,... , mi, i = 1,2,..., n, and

Proof We have XK. = 2:::1 XK(;) and in view of the hypothesis (Rl) one
, i

has
mi

0XK/Xi) = I °XK(;)(Xi)'
j=l i

Furthermore, we note that in this case the subdifferentia1 0XK(;)(Xi) has the
following explicit expression: '

0XK(;)(Xi) = 0,
i

= {O},

= -ceO, of~j)(Xi))'

if f~jl(Xi) > 0,

if f~jl(Xi) < 0,

if 0) -fi (Xi) = 0,

(cf. [3, p. 32].
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To complete the proof it suffices to observe that by Theorem 2.1,
(Xl'"'' Xn) En~~l Ki is an optimum for F if and only if

n

of(xl , .•. , xn) n I1 -OXK,(Xi ) =1= 0. I
i~l

COROLLARY 5.2. Let fE conv(X) and let it be finite everywhere. Let
giE conv(X) and let it be continuous, i = 1,2,..., I. Let hj E conv(X) and let
it be continuous, j = 1,2,... , m. Let the convex sets U, V be defined by
U = n:=l Ui , V = n~l Vj • Furthermore, suppose that the following regularity
hypothesis is satisfied:

and
mnVj =1= 0.

j=l

Then (ii, v) is an optimum for f if and only if there exist

and

such that
y/ E 8hiii - v),

1\ < 0, i = 1,2,... ,1,

A/ ;;?; 0, j = 1,2,... ,111,

Aigi(ii ~ v) = 0,

and

i = 1,2,... , I, A/hiLi - v) = 0, j = 1,2,... , In,

l m

I AiYi = I A/Y/ E of(u - v).
i~l j~l

Proof This follows immediately from Theorem 5.1 upon applying
Lemma 3.1. I

b. Global Simultaneous Approximation

Let X be a normed linear space and let Ki C X, i = 1,2,... , n, be convex
sets. For 1 < p < 00 we consider the following optimization problems:

(Pbp ) Minimize nlxl - x 2 1l P + II Xl - Xa liP + '" + II Xl - x" i!P}l/P for
Xi E K i , i = 1, 2, ... , n, where 1 < p < 00.

(Pb",,) Minimize {max(ll Xl - x21!, Ilxl - xa 11,00" !I Xl - X" it)} for Xi E Ki ,
i = 1,2'00" n.

For the case when n = 2 these problems coincide with the problem of deter­
mining proximal points of convex sets which has been dealt with in [10].
On the other hand, when each one of the sets K 2 , ... , K n is reduced to a
singleton set these problems coincide with the so-called lp·problems of
simultaneous approximation. In case X = 'i&'[a, b], the space of continuous
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functions with the uniform norm, and K I is taken to be a unisolvent family
of degree n, the l",-problem of simultaneous approximation has been con­
considered in [2]. A more general problem of global approximation of a
compact set has been treated in [7]. Here we particularize Theorem 2.1 so
as to obtain a characterization of solutions to the above problems.

THEOREM 5.3. Let p' = p/(p - 1) if 1 < p < 00, p' = 00 if p = 1 and
p' = 1 if p = 00. Then in order that (Xl"'" Xn ) E n;=l K i be a solution to
the problem (Pbp ), 1 ~ p ~ 00, it is necessary and sufficient that there exist
Yi E S(X*), S(X*) being the unit sphere of X*, i = 1,2,... , n, such that

(i) 1:~1 Yi = 0,
(ii) (L;=211 Yi IIP')I/P' = 1 (for p' = 00, max2~i~n II Yi II = 1),

(iii) Re(xi - Xi ,Yi) ~ °(Xi E Ki), i = 1,2,..., n,

(iv) Re 1:~1 (Xi' Yi) = (1::=2 II Xl - Xi IIP)I/P (for p 00,

max2~i~n II Xl - Xi ID·
Proof We set

F(XI ,... , xn) = (~ II Xl - Xi liPtP

,

= m~x {II Xl - Xi II},
2~l<n

1 ~p < 00,

p = 00,

and note that F is a gauge function on Xn. It is then easily verified that
of(xl , ••• , xn) is given by

{(YI ,... , Yn)IYi E S(X*), i = 1,2,..., nand Yi satisfying (i), (ii) and (iv)}.

The proof is completed by applying Theorem 2.1. I
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