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1. INTRODUCTION

Let U, V be a pair of convex sets in a normed linear space X. The points
e, $eV are called proximal if

[y T —_ —_ 5 i _ |
g —oll=dU V)= ueg}ijeyl. u—vl.

It is easily observed that if the points e U, § € ¥ are proximal, then they
are mutually nearest to each other from the respective sets. However, the
converse implication is generally not true, even for Chebyshev! sets U, V.
In this connection it is convenient to restate here the following result from
Pai [9]: “In order that for each pair U, V of convex sets in X, points i1 € U,
7 € ¥V that are mutually nearest to each other be proximal, it is necessary and
sufficient that the space X be smooth.” In the present paper this result is
embedded in the answers to the following general questions pertaining to
convex optimization in locally convex spaces.

QuesTiION 1. Let fbe a convex functional defined on a Hausdorff locally
convex linear topological space X. Let U, V be a pair of convex sets in X,
A pair (i1, 9) € U X V'is called a multioptimum for fif

f@ —0) = inf f@@ — v) = inf f(u — D), (1.1)

and it is called simply an optimum for fif i — ¥ is an optimumfor fon U — V,
ie.,

_ _ . ; ;
f(u —v) = uEIUI?‘fEVf(u — v). (1.2}
* See [12, p. 103] for the definition.
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Then we ask: Under what conditions is a multioptimum (i, ©) an optimum
for f? More generally, we are concerned with

QuestioN 2. Let X;, i =1,2,..., n, be Hausdorff locally convex linear
topological spaces and let K, C X;, i = 1, 2,..., n, be convex sets. Let F be a
convex functional defined on [J;, X;. Denote by Fy,
i =1, 2,..., n, the convex functionals defined on X; by

Ffl,...,ﬁi_l,fiﬂ ..... o?n(xz) = F()?l H xz EERR ] J_Cz'—l s Xi s 551?_+1 EARRH] k—n) (13)
We call (X, , Xy ,..., X,0) € [ 111 K; a multioptimum for F if

F()—Cl sarey 55/”) = 'ngfI Fx-ls'-"xi—lsfii—l ,,,, fn(.xl), i = 1, 2,..., n, (1.4)
and simply an optimum for F if

F(xy,..,%X,) = 116115 F(xy 5 Xo geeey Xp)- . (1.5)
i1z, n

Then we ask: Under what conditions is a multioptimum (X, ,..., X,,) an optimum
for F?

Question 2, of course, contains Question 1 as a special case upon taking
F(u, v) = f(u — v). However, as it turns out, for particular cases such as
the case when fis a gauge function, necessary as well as sufficient conditions
can be given in order that, for each pair U, V of convex sets, (4, 9) € U X V
being a multioptimum for fimply that it is an optimum for f.

The main results pertaining fo Question 2 are given in Section 2. In
Section 3 we are concerned with Question 1 and also deal there with a special
case when fis given as a certain seminorm. Section 4 deals with the important
special cases when the convex sets K; of Section 2 and the convex sets U, V
of Section 3 are contained in subspaces of finite dimension. In Section 5
we discuss two applications: (1) multivariate constrained convex optimization,
and (2) global simultaneous approximation. '

We take the standard framework of convex analysis as adopted in [8]
or [11] and recall here those notions that will frequently be used in the sequel.
Let X, Y be complex linear spaces in duality, <C, > denoting the duality
relation. For topologies on X and Y, we take topologies compatible with the
given duality <<, >. Equipped with these, X, ¥ become Hausdorff locally
convex linear topological spaces. We say feconv(X) if /2 X — R U {4 oo}
is proper, i.e., f = oo and it is convex. Let yx stand for the indicator
function

xx(¥) =0,  xeKk
, x¢K

= 00
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and let dom(f) = {x € X/f(x) < oo}. Following Laurent [6, p. 335], we
say that a function feconv(X) is d-continuous if f is continuous on
int-dom(f). The subdifferential of f at X is of(X) = {y e Y[f(x) = f(Z) +
Relx — X, y>, ¥x € X}. The following result of Morean and Rockafellar
(cf. Holmes [3, p. 25]) will frequently be employed. Let f;, f; € conv(X).
Suppose there exists some point in dom(f;) N dom(f;) at which one of the
two functions is continuous. Then for each X € X one has o(f; -+ foUX) =

X))+ ).

2. CHARACTERIZATION OF OPTIMUM AND MULTIOPTIMUM IN QUESTION 2

Let the linear spaces X; and Y; be in duality, <, >, denoting the duality
relation between them, i = 1,2,..,n. For the product spaces []., X;
and T, ¥; we take the following duality that corresponds to the given
dualities between X; and ¥; :

<(x1 PARAYS xaz)a (yl peeey yn)> = <x1 > y1>1 + <X2 3 y2>2 + — <xn > y%/n .

Tueorem 2.1. Let Fe conv(]—[?=1 X) and let K, CX, be convex,
i =1, 2,.., n Assume that either

(H) dom(F) N TT.; int(K}) +# &
or
(Hy) F is d-continuous and int-dom(F)NT{, . K; # &

holds. Then (X ..y %) € [1iy K; is an optimum for F if and only if there
exists (V1 Vo sees Yu) € [1ioa Yy such that

(1)’ (ylayz LAAAS] yn)eaF(J_cl 5eers xn) and
(i) RedX;, yips = min, e, Rex;, .0 .

Proof. We observe that (%, , X, ,..., %,) € [ 111 K; is an optimum for F
iff 0,0,...,0) € dF + y7_ k) X1 5ees X0,
i OF(Xy 5oy Xp) O —Ox " 5 Ky 5oy X)) # &

(under hypothesis (H;) or (H;"). It suffices therefore to prove that

s

aXn?:lKi(jC_l sesey J—Cn) = J 8XKZ()—CZ) {21}

2

If
o
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Indeed,
(yl srees yn) € 6Xﬂ?=1Ki(}_Cl 3rery fn)

iff )Icneak RC(<X1 > y1>1 +oe 4 yn>n)
i=1/2,.0,7m

= Re(X;, yo1 + - + ReEn , Yudu »
]ﬂ ElEaIg( Re<~xi 5 yz>1, = Re<£2 » y2>z s i: 15 2:"-5 7’1,
iff (115000 V) € [ ] Oxx, (%)
i=1

Theorem 2.1 is a slight extension of a theorem of P8eni¢nii and Rockafellar
for convex programs (see, e.g., [3, p. 30]).

THEOREM 2.2. Suppose Fe conv([1;_, X;) and that it is finite and con-
tinuous at (%; ,..., %) € [ 1oy K; . Then in order that (Xy ,..., %,,) being a multi-
optimum for F imply that it is an optimum for F, it is sufficient that the following
equality hold for the subdifferentials:

OF(%y ooy Xu) = [ OFx,. oty p50000nn (%) 2.2)
i=1

Proof. We first note the following easily established inclusion for the
subdifferentials:

OF(Xy 5eees Xn) C [ 0Fs,,. oy g5, (XD @3)
i=1

Assume now that equality (2.2) holds in the above inclusion. In view of (1.4)
we have that (%, X, ,..., X,,) i a multioptimum for F

iff 0e a(Fxl,...,.%,-_l,xm ..... 2, T XKZ-)(J_%)

= anl’---’“_:i~1=xi+1 .... jn(fz) + 8XK1(5C—Z), = 1, 2,..., n,

Employing (2.1) and (2.2), the last condition holds
iff aF()?l sevesy J_Cn) M —8Xn:_‘=11(i()?1 sosesy )fn) #+= 7,

iff (x;,..., X,,) 1s an optimum for F.
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Remarks. (1) Let Feconv([T,_; X;) and let it be finite and continuous
at (X; ,..., %,). Then the equality (2.2) holds for the subdifferentials if and
only if the following equality holds for the directional derivatives:

(2.4)
n
= Y F(%; 00 %03 0,00, x5 ,00, O).
i—1
In fact,
e = —
FI(Ry geiey Ky 5 Xy ooy Xp) = N > S %Z Redx; ,y@>€
n
< max Redx,, v
= Zzl yi€0F5,,.... gy (B Ko Vi

N n
= 2 Fél,...,ﬁi_l,fiﬂ,...,azn(?_% 5 X5)-
i—1

Hence, equality in the inclusion (2.3) for subdifferentials enforces equality
in the above inequality. Conversely, suppose (2.4) holds and let

n
(yl s V2 seies yn) € H aFﬁl,...,J?iﬁl,fHﬁl ..... ﬁ”(-)_cz>

i=1

Then

n

[
z Re<xi » y1> < z FD%J_,,..,Ei_l,ﬁi+1,...,ﬁn()-ci 5 ‘x’L} = Fl(fl PRRR] j_c'n 5 X1 5ees x?z)
) =1

< F(xl + 3—61 seees X + D—Cn) - F(il preey )—Cn)a
x;eX,,i=1,2,..,n

Thus (¥4, Vs sees V) € OF(Xq ..oy Xp) and (2.2) holds.

(2) Again, let Feconv([T,, X;) and let it be finite and continuous
at (X3 ,..., X,). Then F is Géteaux-differentiable at (X, ,..., X,) if and only if
F,... £,,..%, 18 GAteaux-differentiable at %;, i=1,2,..,n In this
case (2 2) ev1dent1y holds for the subdifferentials.

(3) Apart from the differentiable case of the preceding remark, another
simple case, wherein (2.2) holds for the subdifferentials, is the following:
F(x1 yees X)) = fi(3)) -+ -+ -F fulx,), where feconv(Xy), i = 1,2,....n

640[1g/1~7
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(4) Condition (2.2) is not necessary in order for a multioptimum to be
an optimum. To illustrate this, let X; = X be a Banach space, i = 1, 2,..., ,
and let F(x; ,..., X,) = || Xiy x: 1. Let (% ..., %) = (0, 0,..., 0). Then for
arbitrarily given convex sets K; C X; such that (0,...,0) € [T;-; K; , (0, 0,..., 0)
is a multioptimum implies that it is an optimum for F. However, in this case
it is easily verified that (2.2) does not hold.

TueoREM 2.3. Let F e conv([T;.; X;) and let it be finite and continuous at
(X1 ,eer Xp). Furthermore, suppose that (0,...,0) ¢ oF(X, ,..., X,) and that the
Jollowing holds:

(H U A aF(x))n OF (% %) = 2. (25)

i=1 ;>0

Then in order that for arbitrarily given convex sets K; C X; such that X;€ K, ,
i=1,2,.,n, (X,.., X,) being a multioptimum for F imply that it is an
optimum for F, it is necessary and sufficient that (2.2) hold.

Proof. The sufficiency part is already contained in Theorem 2.2. In order
to prove the necessity part, suppose that (2.2) does not hold and let

n

(Fa v F) (H aF(x))\@F(x e E). (26)

=1
Define the convex sets K; as follows:
K; = {x,e X;/Re{x; — X;, §» = 0}, i=1,2,..,n

Then by Theorem 2.1 one has that (X, ,..., X,,) is a multioptimum for F on
T1K;. To complete the proof of the theorem, we assert that (% ,..., X,,)
is not an optimum for Fon [] X; .

Assume the contrary. Then using Theorem 2.1 once more there exists
an element

(371 peevs in) € aF(El EARRE D_Cn) N ]_—_[ 6X—K,(—5C—z)

i=1

Now-let
H; = {x; e X;/Relx; — X;, §;> = 0}, i=12,..,n

Since J; € ox_x (—X;), one has K, CH,, i =1,..,n. This inclusion of the
half-spaces in X; entails that ¥, = A, 7,, A, > 0, i = 1, 2,..., n, where not
all the A’s are equal to 1 on account of (2.6). This contradicts (2.5) and
establishes the theorem. [
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3. CHARACTERIZATION OF OPTIMUM AND MULTIOPTIMUM IN QUESTION |

Lemma 3.1, Let fe conv(X) and define F < conv(X X X) by Flxy, x;) =
f(xy — x:)(x1 , x5 € X). Given X; , X, € X, one has

ang(fl) = gf(Xy — Xy), 8Fo€1<3_€2) = —f(X — %) (3.1
and
OF(Xy, X3) = {(1, ¥)ye = —y1, Y1 € (X, — X)) (3.2

Proof. Relations (3.1) and the inclusion
(v, )y = =1, y1€ Of (Xy — %)} C OF (%, Xp)

are obvious. ,

In order to reverse this inclusion, suppose (¥, yq) € 0F(%X,, X3). Then in
view of (2.3) and (3.1) one has (y;,yy) € 0f (X — Xy} X —f (Fy — Xo).
Taking into account the definition of subdifferential the inequality

Fler — %) = f(X; — Xy) + Redxy — X, y> + Redxy — X5, 32>

holds for all x; , x, € X. Hence, in particular it holds for x, , x, € X satisfying
X; — Xy = X5 — X, . Thus for all x € X we have Re (x, »; -+ yo> < 0, which
yields y; 4+ y, = 0.

Employing Lemma 3.1 and Theorem 2.1, one immediately obtains

THEOREM 3.2, Let feconv(X) and let U, V be convex sets in X. Assume
that either

(Hy dom(NHnin(U — V) £ @
or :
(Hy) fis d-continuous and int dom(f) " (U — V) = @

holds. Then (i, 0) € U X V is an optimum for f if and only if there exists an
element y € Y such that

() yeif(u —10),
(ﬂ\) Re(ﬁ, y> = infusU Re<u, y>7
(iii) Re{D,y) = sup,ey Redv, 3.

The next theorem furnishes an answer to Question 1 as a particular case
of Theorem 2.2.

THEOREM 3.3. Let fe conv(X) and let it be finite and continuous at i — b.
Then in order that (i, 7) € U X V being a multioptimum for [ imply that
it is an optimum for f, it is sufficient that f be Gdteaux-differentiable at i — 7.
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Proof. Due to the assumption that f is finite and continuous at 7 — 7,
we note that df (i — ) consists of a single element if and only if fis Gateaux-
differentiable at @ — 7. Moreover, in view of Lemma 3.1 and the above
observation it follows that if we take F(u, v) = f(u — v), then the equality
OF(u, ) == 0F ) X 0Fy(?) holds for the subdifferentials if and only if f
is Géteaux-differentiable at # — 7. The proof is completed by applying
Theorem 2.2. §

Remark. Theorem 3.3 remains valid if instead of assuming that f is
finite and contnuous at # — 7, we make any one of the following weaker
hypotheses:

(Hy) (@ —dom(f) nint ¥ +£ @ and (5 + dom(f)) Nint U # &;

(Hy") fisd-continuous and int(# — dom(f) NV # &,
int(d + dom(f ) N U +#£ .

The assertion follows easily by taking into account the first observation
in the proof of Theorem 3.3 and then employing Theorem 3.2.

COROLLARY 3.4. Let feconv(X) and let it be finite and continuous at
X € X. Further suppose that 0 ¢ of (X) and that {{ )50, A (X))} N 0f(X) = .
Then in order that, for arbitrary given convex sets U, V such that X € U and
0V, (X,0) being a multioptimum for [ imply that it is an optimum for f,
it is necessary and sufficient that f be Gdteaux-differentiable at X. A

Proof. This follows immediately from Theorem 2.3 and Lemma 3.1. |J

Corollary 3.4 can be strengthened in the case where fis a gauge function
on X, i.e., a real-valued function on X satisfying f(x; + xa) << f(xy) + f(x2)
for all x,, x,€ X and f(Ax) = Af(x) for all xe X and A > 0. In this case
the subdifferential of fat ¥ is given by of(X) = { y € of (D)/f(X) = RelZX, )},
where 6 denotes the zero vector of X. One thus obtains

THEOREM 3.5. Let f be a continuous gauge function defined on X. Then in
order that for arbitrarily given convex sets U, V in X and points i€ U, €V
such that f(i — D) = 0, (i, D) being a multioptimum for f imply that it is
an optimum for f, it is necessary and sufficient that f be Gdteaux-differentiable
at each point x € X, where f(x) 5= 0.

Proof. The sufficiency part is already contained in Theorem 3.3. To
prove the necessity part, suppose there exists a point X € X such that f(X) = 0
and such that f is not Gateaux-differentiable at X. Then there exist
V1, Y2 € 0f(6), y1 # a2, such that RecX, y;) = RedX, yp» = f(X). Let us
assume first that f(X) > 0. Now select # e X such that 0 << Re{&, y,> <
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Red®, y,> and let U = {x/Re{x, yo» = f(®)}, V = {x/Re{x, y»» = 0}. Then
%€ U, 0 Vand (%, 0) is a multioptimum for f, but it is not an optimum for f.

In fact, let & = Zf(X)/Rel#, yo». Then Red®, 3> < f(X) = Redd, yo).
This gives £ € U, & — Rel®, yo(X/f (X)) € Vand

X
f&®

In case f(X) < 0 we select & € X such that 0 < Re(#, y,» < Re{#, y;> and
proceed exactly as before.

f («c — (x — Red#, y1> )) = Redd, > < (%)

In the last part of this section we consider the particular case when f is
a seminorm defined as follows. Let B be a balanced and equicontinuous sub-
set of ¥ and let

f(x) = sup Relx, y>, xeX.
yeB

We note that the set K = co(B) is a balanced convex and o(Y, X)-compact
subset of ¥ and hence we have f(x) = max,.x Re{x, y> and

of (%) = {y € K[f(X) = Re(x, )}

In the case of a real locally convex space X, the above seminorm f has been
employed by Laurent [6, p. 426}

COROLLARY 3.6. Suppose that K is not contained in any closed hyperplane,
core® (K} == & and that K is strictly convex, ie., x;,%,€K, 0 <A <1,
imply (1 — X) x; + Ax, € core(K). Then for arbitrarily given convex sets U, V
in X and points e U, © €V, (i1, D) is a multioptimum for | implies that it is
an optimum for f.

Proof. In view of Theorem 3.5 it suffices to prove that for each xe X,
x % 8, 9f(x) consists of a single element. We note that for # 5 x e X the
set of (x) is a nonempty o(Y, X)-compact and proper extremal subset of K.
Hence, if 9(x) contained more than one point, say the points y, and y, with
V1 % Vs, then (1 — X) y; -+ Ay, ¢ core(K), 0 < A < 1. This contradicts the
strict convextity of K and establishes the corollary. B

4. CHARACTERIZATION QF OPTIMUM FOR THE CASE OF FINITE DIMENSIONAL
CoNVEX SETS

Here we consider the important special cases when the convex sets K;
of Section 1 and the convex sets U, V of Section 3 are coniained in subspaces

? Recall that Core(K) = {k € K/Vwey » Je>0 D Vagl-e,1¢1, & + A" € K},



92 D. V. PAI

.of finite dimension. For this purpose we adopt essentially the approach as
given in [6, Theorem 8.3.3, p. 438]. However, with a suitable modification
of arguments, it is shown that Theorem 8.3.3 of [6] holds for a convex set
in place of a linear subspace and thereby extends to cover the cases of optima
dealt with in Section 2 and Section 3.

Let KC X be convex and let X € K. By

CK; %= MK—X)
>0

we denote the support cone of K at X. Let L(K; X) = C(K; X) N —C(K; X)
stand for the largest subspace contained in the support cone C(K; X). By the
facet of X in K we will mean the set H(K; X) = (¥ + L(K; X)) N K. Note
that H(K; X) is the smallest extremal subset of K containing X. Hence, X is
and extreme point of K if and only if H(K;X) = {X} (or equivalently
L(K; X) = {0}).

LemMMma 4.1. Let X be of finite dimension n. Suppose f<conv(X) and let
it be finite and continuous at X € X. Suppose y € of (X). Then there exist m
elements y; € Ext® (Of (X)), i = 1, 2,..., m, and m numbers X; > 0, X A; = 1,
such that y = SNy, with 1 <m < n-+1 (for real scalars) or
1 < m < 2n -+ 1 (for complex scalars).

The lemma is well known (cf. [6, p. 436]). It is an immediate consequence
of the Krein—-Milman Theorem, a theorem of Carathéodory and the fact
that 9f(X) is a nonempty o(Y, X)-compact convex set.

Tueorem 4.2. Let Feconv([ Ty X;) and let it be finite and continuous
at (Xy ey %) € [y Ki, where K;CX; are convex sets such that
dim[K;)* = m; , i = L,..., n. Then (X ,..., X,) is an optimum for F if and only
if there exist s elements (yi7,..., y9) € Bxt 0F (X ,..., %), 1 <j <, and s
numbers ; > 0, with Y5 1 A; = 1 such that

A 1<s<Y, ,m+1 (real scalars) or 1 <s <2 S amy 1
complex scalars),
(ll) Re Z;:l AJ<-)—c7. — X, y£])>z < 0 (xi € Kz); i= la 27"'7 n.
Proof. The sufficiency part of the theorem is trivial. To prove the necessity
part, let (%, ,..., X,) € [ ;. K; be an optimum for F. Then by Theorem 2.1
one has

OF(Xy ey X)) O ]| —0xx,(%s) #+ 2. 4.1
=1

3 As usual, Ext(4) denotes the set of extreme points of A4.
* We employ the notation [K;] for the span of K.
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We note that with the o(Y,, X,) topology on ¥;, i = 1, 2,..., », the topology
of the product for [T,_, ¥; coincides with the o(JT;_; ¥;, TT;.: X:) topology
with respect to the corresponding duality (cf. [5, Theorem 17.14, p. 160}).
Thus the set TTiy — dxx (%) is o(IT ¥;, [1X;)-closed and this entails that
the set on the left-hand side of (4.1) is o(TT Y; , [ 1X,)-compact. By the Krein—
Milman theorem we have Ext(3F(%; ,..., %,) O [Ti — &x,(%)) # @. Now
fet ‘

(1,05 ¥) € Bxt (9F(>-c1 s X N ] ~aXKz_(xi)>.

=1L

Then we have

(e O)) = L(aFoa o B) O T =0 (B o m) “.2)

= L(ap(fl seney f’n); (371 9rery J—)'n)) N L (H _“aXKi(fi); ()71 paees yn)>

\i=1

(cf. [6, Proposition 8.3.2]).
On the other hand,

n L n

(1T &) "< (T ~oxes: 5. o)
=1 =1

where A+ stands for the annihilator subspace. For if we assume ( v, ,..., y,) €

(TTies [K;DS, then clearly

n
(31 + Frvees Vo + Ta) € [T —0xx (%)
£=1

Hence, we get that
»n € n '
(1T ) CL{TT ~oxee: (s w70}
=1 =%
Since
L (H —‘aXKi()—C—z')i (Froeees )77;))
i=1 ;
is the largest subspace contained in the cone

n \
c(n O (5 G T0))

=1
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As a consequence, one has that

codim L (ﬁ[ —Ox & (X:); (F1 50005 in)) < dim (ﬁ [Ki]) = i m; . (4.3)

g=1 gs=1 =1

From (4.2) and (4.3) we conclude that L(F(X; ,..., X,); (F1 »eres J)) 18 @ sub-
space of dimension at most equal to Y; ; m; . The remaining argument is
exactly the same as that given in [6, Theorem 8.3.3]. In fact, H(OF(X, ,..., X,);
(V150 ¥n)) is & o(I1 Y, T X;)-compact convex set contained in a linear
variety of dimension at most equal to Y ; m; (2 Y}, m; for the complex
case). Hence, to conclude the proof it only remains to apply Lemma 4.1
and to employ the fact that H(OF(%X; ..., X,); ( Py sees F)) is an extremal
subset of 0F(%; ,..., X,)- |

COROLLARY 4.3, Let feconv(X) and let it be finite and continuous at
i — 0. Suppose ic U and v €V, where U, V are convex sets such that
dim[U] = m and dim[V] = n. Then (@, 0) is an optimum for f if and only if
there exist k elements y,cBxt f(@ — 0) and k numbers A, > 0 with
SF oA =1 such that

1) 1<k m+n+1,@realscalars),l < k < 2m + 2n+ 1, (com-
plex scalars),

(i) Re X, A< — 4, y> <O (uel),
(i) ReYp, AT —v,3> =0@eV).

Proof. This follows immediately upon applying Lemma 3.1 and
Theorem 4.2, ||

Theorem 4.2 can be generalized so as to be valid under the slightly weaker
hypothesis (H,"). For this purpose we again adopt basically the same approach
as that given in [6, Theorem 8.3.6].

We recall that an extremal ray D of a set 4 C X is a closed semiline con-
tained in A, which is also an extremal subset of 4. Extreme directions of 4
are elements d such that A4 contains an extremal ray of the type
D = {x[x = xo -+ M, X = 0}.

THEOREM 4.4. Let Feconv([ 1, X;) and let it satisfy (Hy). Let K; C X;,
be convex sets such that dim[K;] = m; ,i = 1,..., n. Then (X, ,..., X,) € H:;l K;
is an optimum for F if and only if there exist s elements (p{,...,y) e
Ext 0F(%y 5., X), 1 <j < 5 and t elements (d,...,dP), 1 <j<t,t>0,

that are extreme directions of OF(Xy y, %), With 1 < s+t <30 m; + 1
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2 Y7 m; -+ 1 for complex scalars) and positive numbers Ay ..., Ag, fiy 5oy e »
Sia X =1, such that

8

:
Re %Z MRy — xp, ¥, -+ > X — %, Py <0
i

{j=1

(x;eK), 1=1,2,...,n

Proof. The sufficiency part of the theorem clearly follows f{rom
Theorem 2.1. To prove the necessity part, let (X ,..., X,) € [ 1, K; be an
optimum for F. Since F is d-continuous the set 9F(Xy,...,%,} is a
o(TTi ¥, TTios Xo)-closed convex locally compact set not containing a
line (cf. [4]). Employing Theorem 2.1 and Theorem 8.3.6(i) of Laurent [6,
p. 441], there exists an element

(1 s 72) € Ext (aF(a-cl AT ~axKi(fci>).

i=1

Proceeding exactly as in the proof of Theorem 4.2, we obtain that
H@F(%y .., %0); (Fy s Fo 0eer ) 8 8 0T 5oy ¥i» TTies Xo)-closed convex set
not containing a line and such that it is contained in a linear variety of
dimension equal to 37 _; m; (2 3, m; for the complex case). The remaining
argument is the same as that given in [6, Theorem 8.3.7]. §

COROLLARY 4.5. Let feconv(X) and let it satisfy (Hy). Let U, V be
convex sets such that dim[U] = m, dim[V] =n, and letie U, G V. Then
(@, ©) is an optimum for f if and only if there exist k elements y;,i = 1,..., k,
k =1, that are extreme points of of (G — ©) and s elements d;, i = 1,..., 5,
s = 0, that are extreme directions of Of (i — D) withl <k +s<m+n-+1
(2m + 2n -+ 1 for the complex case) and positive Wumbers Ay ..., Ay, , by yoer Pos »
such that

(1) Re{Siy M@ —u, p> + Xi_g peii — 1, dd} < 0 (ue U),
(i) RefYr AT — v, s> + Sy pil® — v, dD} =0 (e V).
5. APPLICATIONS

Here we consider two specific examples, wherein the results of the previous
sections are applicable.
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a. Multivariate Constrained Convex Optimization

Let Feconv([];; X;) and let it be finite everywhere. Let /¢ € conv(X;)
and let it be continuous on X;,j = 1, 2,..., m; , i = 1, 2,..., n. Furthermore,
let the convex sets K; C X; be defined as follows:

Ki=KYnKPn k™, i=1,2..,n
where
K9 = (x; e X,)f P (x) <O}, j=1,2.,myandi=12,..,n
In addition, we make the following regularity hypothesis on the
functions f{:

(Ry) NR? %@, i=12.n
=1

Then Theorem 2.1 takes the following particular form.

TaroreM 5.1. (Kuhn-Tucker-type characterization) If the hypothesis (R;)
is fulfilled, then (%, ,..., %) € [ 111 K; is an optimum for F if and only if there
exist elements yp\ e ofP(x,) and numbers AP <0, j=1,2,.,my,
i=1,2,..,n, such that \'fP(%) = 0,j = 1,..,my, i =1,2,...,n, and

my My,
( AP, Y A;ﬁy;f’) € OF(%y 5., %)
j=1 j=1

Proof. 'We have x, = 3% xxw and in view of the hypothesis (R;) one
has '

m;
8XK,-(5C_1') - 721 5}{;{51‘)(551')-
Furthermore, we note that in this case the subdifferential 3XK§J‘>(>_%) has the
following explicit expression:
Oxgo(%) = 2, if fPE) >0,

= {6}, if 79 <o,

= —C, Px), if fO®) =0,
(cf. [3, p- 32].
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To complete the proof it suffices to observe that by Theorem 2.1,
(X3 oy %p) € TTiy K; is an optimum for F if and only if

8F(f1 PYXET) ?_C.") N H ~8XK1()_CZ) :,zé . !

=1

COROLLARY 5.2. Let feconv(X) and let it be finite everywhere. Let
g€ conv(X) and let it be continuous, i = 1, 2,..., . Let k; € conv(X) and let
it be comtinuous, j = 1,2,...,m. Let the convex sets U, V be defined by
U= ﬁ,i;l U, , V= (Y,-il V; . Furthermore, suppose that the following regularity
hypothesis is satisfied.

(R.) NU: # o and NV, # o.

i=1 j=1
Then (u, D) is an optimum for f if and only if there exist
yicdgm—, N<0, i=12..
and
¥ € oh(u — v), AM=0, j=12..,m,
such that
)‘zgz(ﬁ — 17) = 0, i= 1, 2,..., l, Aj,hj(ﬁ - lj) = 07 ] = 1, 2,..., m,

and
14 m
Z Ay = z Ay; € of (it — ©).
i=1 j=1

Proof. This follows immediately from Theorem 5.1 upon applying
Lemma 3.1. §

b. Global Simultaneous Approximation

Let X be a normed linear space and let K, C X, i = 1, 2,..., n, be convex
sets. For 1 << p <C oo we consider the following optimization problems:

(Pb,) Minimize {{x; — X, [|? + || xy — 2517 + - + [ %, — x,, [P}/2 for
x;€K;,i =1,2,.,n where 1 <p << 0.

(Pby) Minimize {max(|| x; — X [, [| %3 — X3lee0s | X3 — x5 D} for ;€ K,
i=12,..,n

For the case when n = 2 these problems coincide with the problem of deter-
mining proximal points of convex sets which has been dealt with in [10].
On the other hand, when each one of the sets X ,..., K, is reduced to a
singleton set these problems coincide with the so-called 7 -problems of
simultaneous approximation. In case X = €]a, b], the space of continucus
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functions with the uniform norm, and K; is taken to be a unisolvent family
of degree n, the /,-problem of simultaneous approximation has been con-
considered in [2]. A more general problem of global approximation of a
compact set has been treated in [7]. Here we particularize Theorem 2.1 so
as to obtain a characterization of solutions to the above problems.

THEOREM 5.3. Letp =pl(p —Difl <p < o0,p' =0 ifp=1and
P =1if p = . Then in order that (%, ,..., X,) € [1r.1 K; be a solution to
the problem (Pb,), 1 < p << o0, it is necessary and sufficient that there exist
¥ € S(X*), S(X*) being the unit sphere of X*, i = 1, 2,..., n, such that

(l) Z:;l Yi = 05
() G lys|P)H?" = 1 (forp" = o0, MaXegicu | i1l = 1),
(Hi) Re<x7, — X y2> < 0 (xi € Kl)n i= 19 2,'--3 n,
() Re X,y Ky = Cia | % — K 9Y?  (for  p = oo,
maXagicy || X1 — X;1)).

Proof. We set
n 1/p
F(xl 3rres xn) = (Z ” xl — X; ”p) ’ 1 <P < o0,
i=2 :

= 2]2?(3(" {“ X1 — X ”}: D = 0O,
and note that F is a gauge function on X™. It is then easily verified that
oF(xy ,..., X,) is given by

{150 Py €S(X®),  i=1,2,.,nand y, satisfying (i), (ii) and (iv)}.

The proof is completed by applying Theorem 2.1. |
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